From the plastic equation you have
that is
With a pocket calculator you get the following approximate values
1.0 |
1.259921049894873 |
1.3122938366832888 |
1.3223538191388249 |
1.324268744551578 |
1.3246326252509202 |
1.3247017485103587 |
1.3247148784409506 |
1.324717372435671 |
1.3247178461621454 |
1.324717936144965 |
It is possible to obtain more interesting sequences of rational terms.
If you write the plastic equation in the following way
you can define the sequence
that is
fraction | decimal approximation |
---|---|
1 | 1.0 |
4 / 3 | 1.33333333333333333333... |
49 / 37 | 1.3243243243243243243... |
7396 / 5583 | 1.3247358051226938922... |
168454441 / 127162573 | 1.3247171477098060921 |
Applying the Newton's method to approximate the real zero of the function
you have
that is
fraction | decimal approximation |
---|---|
1 | 1.0 |
3 / 2 | 1.5 |
31 / 23 | 1.3478260869565217391... |
71749 / 54142 | 1.32520039895090687451... |
448712783118393 / 338723203112569 | 1.3247181739990537344... |